氨的式量是多少?

氨气(Ammonia),是一种无机化合物,化学式为NH3,分子量为17.031,密度 0.7710 g/L,相对密度0.5971(空气=1.00)。是一种无色、有强烈的刺激气味的气体。氨气能使湿润的红色石蕊试纸变蓝,能在水中产生少量氢氧根离子,呈弱碱性。在常温下加压即可使其液化(临界温度132.4℃,临界压力11.2兆帕,即112.2大气压),沸点-33.5℃,也易被固化成雪状固体,熔点-77.75℃,溶于水、乙醇和乙醚。在高温时会分解成氮气和氢气,有还原作用。有催化剂存在时氨气可被氧化成一氧化氮。氨气常用于制液氮、氨水、硝酸、铵盐和胺类等。氨气可由氮和氢直接合成而制得,能灼伤皮肤、眼睛、呼吸器官的粘膜,人吸入过多,能引起肺肿胀,以至死亡 [1]  。

氨气被列入《危险化学品名录》, [9]  并按照《危险化学品安全管理条例》管控。 [10] 

中文名 氨气 [11] 外文名 Ammonia [11] 别    名 氨 [11] 化学式 NH3 [4] 分子量 17.031 [11] CAS登录号 7664-41-7 [11] EINECS登录号 231-635-3 [11] 熔    点 -77.7 ℃(101 KPa) 沸    点 -33.5 ℃(101 KPa) 水溶性 极易溶于水 密    度 0.7710 kg/m³(20℃,101 KPa) 外    观 无色有刺激性恶臭的气味 [4] 闪    点 11ºC 安全性描述 S26;S7;S45;S36/37/39;S16;S9;S61 [11] 危险性符号 F [11] 危险性描述 R10;R11;R36/37/38;R39/23/24/25 [11] UN危险货物编号 1219 [11] 

目录

  1. 1 研究简史
  2. 2 物质结构
  3. 3 理化性质
  4. 物理性质
  5. 化学性质
  6. 4 应用领域
  1. 5 安全措施
  2. 急救措施
  3. 泄漏处理
  4. 消防措施
  5. 危害防治
  6. 健康危害
  7. 6 毒理资料
  1. 7 检验方法
  2. 8 衍生物
  3. 联氨
  4. 羟氨

自古以来,人们就知道氨的气味。18世纪,著名化学家约瑟夫·布莱克(苏格兰)、彼得·沃尔夫(爱尔兰)、卡尔·威廉·舍勒(瑞典/德国)和约瑟夫·普里斯特利(英格兰)发现空气中的氮能被碳化钙固定而生成氰氨化钙,氰氨化钙与过热水蒸汽反应制的氨。1785年,法国化学家克劳德·路易斯·贝索莱测定了它的元素组成。 [8] 

由于氮气的化学性质很不活泼,以氮气和氢气为原料合成氨的工业化生产曾是一个较难的课题。1909年,德国化学家哈伯(E.Haber,1868一1934)经过反复的实验研究后发现,在500-600℃、17.5~20.0 MPa和锇为催化剂的条件下,反应后氨的含量可达到6%以上,具备了工业化生产的可能性。为了把哈伯合成氨的实验室方法转化为规模化的工业生产,德国工程师博施(C. Bosch,1874一1940)改进了哈伯首创的高压合成氨,找到了合适的氧化铁型催化剂,使合成氨生产工业化,称为"哈伯--博施法"。

1913年,一个年产量7000吨的合成氨工厂建成并投产,实现了合成氨的工业化生产。从此,合成氨成为化学工业中迅速发展的重要领域。由于合成氨工业生产的实现和相关研究对化学理论与技术发展的推动,哈伯和博施都获得了诺贝尔化学奖。合成氨是人类科学技术发展史上的一项重大成就,在很大程度上解决了地球上因粮食不足而导致的饥饿问题,是化学和技术对社会发展与进步的巨大贡献。 [7] 

2020年,全球氨生产能力为2.24亿吨。实际产量为187吨,在全球生产的化学品中排名第九。 [8] 

氮原子有5个价电子,其中有3个未成对,当它与氢原子化合时,每个氮原子可以和3个氢原子通过极性共价键结合成氨分子。

氨的式量是多少?
氨气分子球棍模型

从氨的结构来看,氨分子里的氮原子还有一个孤对电子,可以结合成质子,显示碱性;可作为Lewis碱,形成配位化合物(如加合物);氨分子上有三个活性氢,可以被取代而发生取代反应;氨分子的空间结构是三角锥型,极性分子 [4] 

氨气物理性质

氨气在标准状况下的密度:0.7710 g/L

临界点:132.4℃

蒸汽压:506.62 kPa(4.7℃)

熔点:-77.7℃ (常压)

沸点:-33.5℃ (常压)

溶解性:极易溶于水(体积:1:700或质量:53.97 g/100 g)

自燃点:651.1℃

临界压力:11.2 MPa

临界体积:72.47 cm³/mol

临界密度:0.235 g/cm³

临界压缩系数:0.242

液体热膨胀系数:25℃时 0.00251/℃

表面张力:19.75×10-3 N/m,19.75 dyn/cm

汽化热:1336.97 kJ/kg,574.9 BTU/1 b

熔化热:332.16 kJ/kg,142.83 BTU/1 b

气体定压比热容:2.112 kJ/(kg·K),0.505 BTU/(1 b·R)

气体定容比热容:1.624 kJ/(kg·K),0.388 BTU/(1 b·R)

气体比热容比:1.301

气体摩尔熵:192.67 J/(mol·K )

气体摩尔生成焓:-45.9 kJ/mol

气体黏度:101.15×10-7 Pa·s,101.15 μPa

液体黏度:0.135 mPa ·s

燃烧热,25℃(77 ℉)气态时 18603.1 kJ/kg,7999.3 BTU/1 b

空气中爆炸低限含量:16.1%

空气中爆炸高限含量:25% [1] 

氨气化学性质

1.与水反应

在常温,常压下,一体积的水中能溶解700体积的氨。

氨在水中的反应可生成一水合氨:

一水合氨不稳定受热分解生成氨和水: [7] 

喷泉实验

喷泉实验

在干燥的圆底烧瓶里充满氨气,用带有玻璃管和滴管(滴管里预先吸入水)的塞子塞紧瓶口。立即倒置烧瓶,使玻璃管插入盛水的烧杯里(水里事先加入少量的酚酞试液),把实验装置装好后。打开橡皮管的夹子,挤压滴管的胶头,使少量的水进入烧瓶,可以观察到酚酞溶液变红并且在尖嘴导管口形成喷泉。

实验的基本原理是加水使烧瓶内大部分氨气溶于水,在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,从而在导管口形成喷泉。 [7] 

2.与酸反应

铵氨与酸作用可得到铵盐,铵盐是由铵根离子

)和酸根离子组成的化合物。一般为无色晶体,易溶于水,是强电解质。从结构来看,

是等电子体。

的半径比

的大,而且接近于

,因此

具有+1价碱金属离子的性质,在晶体结构和溶解度方面非常相似,除高氯酸铵和酒石酸氢铵外大多数铵盐都溶于水。但由于

是由5个原子组成的,与一般碱金属离子性质也有所差别(如易分解性·,水解性,热稳定性差)。 [4] 

氨与硝酸:NH3+HNO3=NH4NO3

氨与硫酸:2NH3+H2SO4=(NH4)2SO4

氨与盐酸:NH3+HCl=NH4Cl

氨与磷酸:3NH3+H3PO4=(NH4)3PO4

氨与乙酸::NH3+CH3COOH=CH3COONH4

氨与碳酸:NH3+H2CO3=NH4HCO3

碳酸氢铵不稳定受热分解:

3.氧化还原反应

氨分子中的N原子的氧化数为-3,为氮的最低氧化态,在一定条件下可以被氧化形成较高氧化数的物质,产物中以N2为主。如,在热的铂丝催化下与氧气反应、在纯氧中燃烧、用氯或溴处理,都可将其氧化:

另外,氨气还能将金属氧化物还原为金属单质,如在加热条件下氨气会与氧化铜发生反应: [4] 

4.加合反应

加合反应(氨合反应):作为Lewis碱,氨以其分子中的孤对电子与许多金属离子(Lewis酸)作用形成氨配离子,如[Ag(NH3)2]+、[Cu(NH3)4]2+、[Cr(NH3)6]2+、[Co(NH3)6]3+和[Pt(NH3)4]2+等,使许多难溶化合物溶解。

氨与具有空轨道的Lewis酸反应 [4]  

此外,氨还可与具有空轨道的Lewis酸直接作用形成相应的加合物,如: [4] 

5.取代反应

取代反应(又称氨解反应):从两方面考虑,把NH3当作三元酸,其氢原子可依次被取代分别生成氨基、亚氨基和氮化物的衍生物,取代氢的基团可为金属、非金属或其他基团:

另一方面,也可以看作以氨基、亚氨基取代其他化合物中的原子或基团生成的产物: [4] 

1.在电子工业中,高纯氨用于模集成电路减压或等离子体CVD,以生长二氧化硅膜锅炉给水pH值调节剂,氨用来中和给水中的碳酸,提高pH值,减缓给大规水中二氧化碳的腐蚀。也是锅炉停炉保护剂,对锅炉内有少量存水不能放出的锅炉也有较好的保护效果。

3.在食品工业中用作碱性剂、酵母养料、食用色素稀释剂、冻豆腐制造用剂和溶剂。也可用于可可粉及含糖可可粉、可可豆粉、可可液块和可可油饼,食用酪蛋白酸盐的加工,用量按GMP。

4.在化工、科研等领域用作标准气、配制标准混合气、物性测定、硅或氧化硅的氮化等。在无机化学工业中用于铵盐、硝酸、氰化氢、肼、羟胺、硫胺、硝胺、磷胺、尿素等的制造。在有机化学工业中可将液氨与烷基氯或醇反应制备烷基胺,如1,2-二氯乙烷反应制取乙二胺,与己二腈反应制取己二胺,与丙烯反应制取丙烯腈等。其他还可用于吗啉、哌嗪、乌洛托品、皮考啉,2-甲基-5-乙烯基吡啶等的制造和用作冷冻剂等,氨还可以作为生物燃料来提供能源。 [6] 

5.用于制造氨水和液氨,氨水的用途非常广泛,如,可以检验HCl等气体的存在,与铝盐溶液反应制氢氧化铝。配制银氨溶液检验有机物分子中醛基的存在等。液氨可用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。在国防工业中,用于制造火箭、导弹的推进剂。可用作有机化工产品的氨化原料,因为液氨在气化后转变为氨气,能吸收大量的热,被誉为“冷冻剂”,同时液氨具有一定的杀菌作用,所以在家禽养殖业中,被用于杀菌和降温制冷作用。液氨还可用于纺织品的丝光整理等。

氨气急救措施

如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。

如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20 min以上。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。

对接触的皮肤和头发用大量清水冲洗15 min以上。冲洗皮肤和头发时要注意保护眼睛 [3]  。

病人复苏

应立即将患者转移出污染区,至空气新鲜处,对病人进行复苏三步法(气道、呼吸、循环)。

气道:保证气道不被舌头或异物阻塞。

呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气。

循环:检查脉搏,如没有脉搏应施行心肺复苏。

初步治疗

氨中毒无特效解毒药,应采用支持治疗。

如果接触浓度≥500 ppm,并出现眼刺激、肺水肿的症状,应立即就医。

对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。

如果呼吸窘迫,应考虑进行气管插管。

如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。

误服者给饮牛奶,有腐蚀症状时忌洗胃 [3]  。

氨气泄漏处理

氨对人体生理的影响氨无色具有强烈的刺激臭味,对人体有较大的毒性。氨气慢性中毒会引起慢性气管炎、肺气肿等呼吸系统病,急性氨中毒反映在咳嗽不止、憋气等。

(1) 少量泄漏。

撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。

(2) 大量泄漏。

疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。

向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。

禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻转泄漏的容器以避免液氨漏出。要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备清洗消毒 [3]  。

氨气消防措施

在贮存及运输使用过程中,如发生火灾应采取以下措施:

(1)报警:迅速向当地119消防、政府报警。报警内容应包括:事故单位、事故发生的时间、地点、化学品名称、危险程度、有无人员伤亡以及报警人姓名、电话。

(2)隔离、疏散、转移遇险人员到安全区域,建立500 m左右警戒区,并在通往事故现场的主要干道上实行交通管制,除消防及应急处理人员外,其他人员禁止进入警戒区,并迅速撤离无关人员。

(3)消防人员进入火场前,应穿着防化服,佩戴正压式呼吸器。氨气易穿透衣物,且易溶于水,消防人员要注意对人体排汗量大的部位,如生殖器官、腋下、肛门等部位的防护。

(4)小火灾时用干粉或CO2灭火器,大火灾时用水幕、雾状水或常规泡沫。

(5)储罐火灾时,尽可能远距离灭火或使用遥控水枪或水炮扑救。

(6)切勿直接对泄漏口或安全阀门喷水,防止产生冻结。

(7)安全阀发出声响或变色时应尽快撤离,切勿在储罐两端停留 [3]  。

氨气危害防治

(2)工作时应选用耐腐蚀的工作服、防碱手套、眼镜、胶鞋、防毒口罩,防毒口罩应定期检查,以防失效。

(3)在使用氨水作业时,应随身备有清水,以防万一;在氨水运输过程中,应随身备有3%硼酸液,以备急救冲洗;配制一定浓度氨水时,应戴上风镜;使用氨水时,作业者应在上风处,防止氨气刺激面部;操作时要严禁用手揉擦眼睛,操作后洗净双手。

(4)预防皮肤被污染,可选用硼酸油膏。

(5)配备良好的通风排气设施、合适的防爆、灭火装置。

(6)工作场所禁止饮食、吸烟、明火、火花。

(7)应急救援时,必须佩带空气呼吸器。

(8)发生泄漏时,将泄漏钢瓶的渗口朝上,防止液态氨溢出。

(9)加强生产过程的密闭化和自动化,防止跑、冒、滴、漏。

(10)使用、运输和贮存时应注意安全,防止容器破裂和冒气。

(11)现场安装氨气监测仪,及时发现报警 [3]  。

氨气健康危害

吸入

氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。吸入是接触的主要途径,吸入氨气后的中毒表现主要有以下几个方面。

轻度吸入氨中毒表现有鼻炎咽炎、喉痛、发音嘶哑。氨进入气管支气管会引起咳嗽、咯痰、痰内有血。严重时可咯血及肺水肿呼吸困难、咯白色或血性泡沫痰,双肺布满大、中水泡音。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。

急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。

急性轻度中毒:咽干、咽痛、声音嘶哑、咳嗽、咳痰,胸闷及轻度头痛,头晕、乏力,支气管炎和支气管周围炎。

急性中度中毒:上述症状加重,呼吸困难,有时痰中带血丝,轻度发绀,眼结膜充血明显,喉水肿,肺部有干湿性哕音。

急性重度中毒:剧咳,咯大量粉红色泡沫样痰,气急、心悸、呼吸困难,喉水肿进一步加重,明显发绀,或出现急性呼吸窘迫综合症、较重的气胸和纵隔气肿等。

严重吸入中毒:可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度的氨可直接影响肺毛细血管通透性而引起肺水肿,可诱发惊厥、抽搐、嗜睡、昏迷等意识障碍。个别病人吸入极浓的氨气可发生呼吸心跳停止。 [2] 

皮肤和眼睛接触

低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。急性轻度中毒:流泪、畏光、视物模糊、眼结膜充血。

皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。

高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。

1.急性毒性

LD50:350 mg/kg(大鼠经口);

LC50:4230 ppm(小鼠吸入,1 h);2000 ppm(大鼠吸入,4 h)。

2.刺激性

家兔经眼100 mg,重度刺激。

3.亚急性与慢性毒性

大鼠,20 mg/m3,每天24 h,84 d,或每天5~6 h,7个月,出现神经系统功能紊乱。

4.致突变性

微生物致突变性:大肠杆菌1500 ppm(3 h)。细胞遗传学分析:大鼠吸入19800 μg/m3(16周)。

5.生态毒性

LC50:>3.58 mg/L(24 h)(彩鲑,已受精的);>3.58 mg/L(24 h)(彩鲑,幼年的);0.068 mg/L(24 h)(彩鲑,85天的鱼苗);0.097 mg/L(24 h)(彩鲑,成年的);24 mg/L(48 h)(水蚤)。 [6] 

中和法:

用玻璃棒蘸浓盐酸靠近,产生白烟,证明有氨气。

(白色固体)

离子色谱法:

以稀硫酸作为吸收液采集空气中的氨,使氨在吸收液中转化为铵离子,选用抑制型电导检测器,D ionex IonPac CS10阳离子分析柱,以HCl作为淋洗液,进样体积50 μl,通过测定吸收液中的铵离子来计算空气中氨的浓度.结果:对空气中氨气的采样效率大于98%,铵离子在1~100 mg/L范围内具有良好的线性(r=0.9990),方法精密度高(RSD5%),对铵离子的检出限为0.1 mg/L,最小采样体积为9.5 L;与国家标准方法纳氏试剂分光光度法(GB/T14668)比较,测定结果一致。 [5] 

氨气联氨

联氨(NH2NH2)又称为肼,联氨是一种吸湿性很强、介电常数较高的无色液体,熔点为275 K,沸点为386.5 K。固态时由于氢键的形成·,两岸为联状多聚体。许多盐溶于液态联氨中,所得的溶液具有良好的导电性。联氨可以看作氨分子中的一个氢原子被氨基取代的衍生物。在联氨分子中的每个氮原子都以sp3不等性杂化形成σ键,每个氨上有一对孤对电子。过去一直认为由于氮原子上孤电子对之间的排斥作用,孤电子对应处于反位。最近从联氨分子具有较强的极性(μ=1.85 D)等方面考虑,认为联氨分子应该是顺式结构 [4] 

氨气羟氨

羟氨(NH2OH)可以看作NH3分子中的一个氢被OH-(羟基)取代的衍生物,羟氨分子中的N和O都是以不等性sp3杂化轨道形成σ键。

羟氨是一种无色吸湿性很强的固体,熔点为305.5 K(2.93 kPa),易溶于水和低级醇中。 [4] 

参考资料
  • 1    王箴等.化工辞典[M].化学工业出版社,2010 .
  • 2    氨对人体健康的危害 .卫生部卫生应急办公室,中国CDC职业卫生与中毒控制所 .2012-11.
  • 3    氨安全技术说明书   .MSDS[引用日期2022-04-12]
  • 4    张天蓝,姜风超.无机化学[M].人民卫生出版社,2016:249-252.
  • 5    应波, 李淑敏, 岳银玲. 离子色谱法测定空气中的氨气[J]. 中国卫生检验杂志, 2006, 16(1):2.
  • 6    张海峰.危险化学品安全技术全书[M].化学工业出版社,2008.
  • 7    王晶.人教版高中化学必修二[M].人民教育出版社,2019:12-14.
  • 8    Ammonia   .American Chemical Society[引用日期2022-04-23]
  • 9    危险化学品目录(2015版)   .中华人民共和国应急管理部[引用日期2022-08-04]
  • 10    国家安全生产监督管理总局 中华人民共和国工业和信息化部 中华人民共和国公安部 中华人民共和国环境保护部 中华人民共和国交通运输部 中华人民共和国农业部 中华人民共和国国家卫生和计划生育委员会 中华人民共和国国家质量监督检验检疫总局 国家铁路局 中国民用航空局公告(2015年 第5号)危险化学品目录(2015版)--中华人民共和国应急管理部   .中华人民共和国应急管理部[引用日期2022-08-04]
  • 11    氨   .化源网[引用日期2022-09-01]
展开全部 收起